Archimedean Copulas
AMHCopula
TwinCopulas.AMHCopula
— TypeAMHCopula{P}
Fields:
- θ::Real - parameter
Constructor
AMHCopula(θ)
The bivariate AMH copula is parameterized by $\theta \in [-1,1)$. It is an Archimedean copula with generator :
\[\phi(t) = 1 - \frac{1-\theta}{e^{-t}-\theta}\]
It has a few special cases:
- When θ = 0, it is the IndependentCopula
- When θ = 1, it is the UtilCopula
References:
- Nelsen, Roger B. An introduction to copulas. Springer, 2006.
ClaytonCopula
TwinCopulas.ClaytonCopula
— TypeClaytonCopula{P}
Fields:
- θ::Real - parameter
Constructor
ClaytonCopula(d,θ)
The bivariate Clayton copula is parameterized by $\theta \in [-1,\infty)$. It is an Archimedean copula with generator :
\[\phi(t) = \left(1+\mathrm{sign}(\theta)*t\right)^{-1\frac{1}{\theta}}\]
It has a few special cases:
- When θ = -1, it is the WCopula (Lower Frechet-Hoeffding bound)
- When θ = 0, it is the IndependentCopula
- When θ = 1, it is the UtilCopula
- When θ = ∞, is is the MCopula (Upper Frechet-Hoeffding bound)
References:
- Nelsen, Roger B. An introduction to copulas. Springer, 2006.
FrankCopula
TwinCopulas.FrankCopula
— TypeFrankCopula{P}
Fields:
- θ::Real - parameter
Constructor
FrankCopula(θ)
The bivariate Frank copula is parameterized by $\theta \in (-\infty,\infty)$. It is an Archimedean copula with generator :
\[\phi(t) = -\frac{\log\left(1+e^{-t}(e^{-\theta-1})\right)}{ heta}\]
It has a few special cases:
- When θ = -∞, it is the WCopula (Lower Frechet-Hoeffding bound)
- When θ = 1, it is the IndependentCopula
- When θ = ∞, is is the MCopula (Upper Frechet-Hoeffding bound)
References:
- Nelsen, Roger B. An introduction to copulas. Springer, 2006.
GumbelBarnettCopula
TwinCopulas.GumbelBarnettCopula
— TypeGumbelBarnettCopula{P}
Fields:
- θ::Real - parameter
Constructor
GumbelBarnettCopula(θ)
The bivariate Gumbel-Barnett copula is parameterized by $\theta \in (0,1]$. It is an Archimedean copula with generator :
\[\phi(t) = \exp{θ^{-1}(1-e^{t})}, 0 \leq \theta \leq 1.\]
It has a few special cases:
- When θ = 0, it is the IndependentCopula
References:
- Joe, H. (2014). Dependence modeling with copulas. CRC press, Page.437
- Nelsen, Roger B. An introduction to copulas. Springer, 2006.
GumbelCopula
TwinCopulas.GumbelCopula
— TypeGumbelCopula{P}
Fields:
- θ::Real - parameter
Constructor
GumbelCopula(d,θ)
The bivariate Gumbel copula is parameterized by $\theta \in [1,\infty)$. It is an Archimedean copula with generator :
\[\phi(t) = \exp{-t^{\frac{1}{θ}}}\]
It has a few special cases:
- When θ = 1, it is the IndependentCopula
- When θ = ∞, is is the MCopula (Upper Frechet-Hoeffding bound)
References:
- Nelsen, Roger B. An introduction to copulas. Springer, 2006.
InvGaussianCopula
TwinCopulas.InvGaussianCopula
— TypeInvGaussianCopula{P}
Fields:
- θ::Real - parameter
Constructor
InvGaussianCopula(θ)
The bivariate Inverse Gaussian copula is parameterized by $\theta \in [0,\infty)$. It is an Archimedean copula with generator :
\[\phi(t) = \exp{\frac{1-\sqrt{1+2θ^{2}t}}{θ}}.\]
More details about Inverse Gaussian Archimedean copula are found in :
Mai, Jan-Frederik, and Matthias Scherer. Simulating copulas: stochastic models, sampling algorithms, and applications. Vol. 6. # N/A, 2017. Page 74.
It has a few special cases:
- When θ = 0, it is the IndependentCopula
References:
- Nelsen, Roger B. An introduction to copulas. Springer, 2006.
JoeCopula
TwinCopulas.JoeCopula
— TypeJoeCopula{P}
Fields:
- θ::Real - parameter
Constructor
JoeCopula(θ)
The bivariate Joe copula is parameterized by $\theta \in [1,\infty)$. It is an Archimedean copula with generator :
\[\phi(t) = 1 - \left(1 - e^{-t}\right)^{\frac{1}{\theta}}\]
It has a few special cases:
- When θ = 1, it is the IndependentCopula
- When θ = ∞, is is the MCopula (Upper Frechet-Hoeffding bound)
References:
- Nelsen, Roger B. An introduction to copulas. Springer, 2006.
Nelsen2Copula
TwinCopulas.Nelsen2Copula
— TypeNelsen2Copula{P}
Fields:
- θ::Real - parameter
Constructor
Nelsen2Copula(θ)
The bivariate Nelsen2Copula copula is parameterized by $\theta \in [1,\infty)$. It is an Archimedean copula with generator :
\[\phi(t) = 1 - t^{\frac{1}{\theta}}\]
It has a few special cases:
- When θ = 1, it is the IndependentCopula
- When θ = ∞, is is the MCopula (Upper Frechet-Hoeffding bound)
References:
- Nelsen, Roger B. An introduction to copulas. Springer, 2006.
UtilCopula
TwinCopulas.UtilCopula
— TypeUtilCopula{}
Constructor
UtilCopula()
The bivariate UtilCopula is a simple copula that appears as a special case of several copulas, that has the form :
\[C(u_1, u_2) = \frac{u_1u_2}{u_1+u_2 - u_1u_2}\]
It happends to be an Archimedean Copula, with generator :
\[\phi(t) = 1 / (t + 1)\]
References:
- Nelsen, Roger B. An introduction to copulas. Springer, 2006.