Skip to content

Extra Continuous Distributions

AdditionalDistributions.Alpha Type
julia
Alpha(α, β)

An Alpha distribution is defined by the following probability density function (PDF):

f(x;α,β)=β2πΦ(α)x2exp((αβx)22),x>0

where:

  • α is a location parameter

  • β is a scale parameter

  • Φ is the cumulative distribution function (CDF) of the standard normal distribution.

julia
Alpha()        # equivalent to Alpha(1, 1)

params(d)        # Get the parameters, i.e. (α, β)
source
julia
using Distributions, AdditionalDistributions

AdditionalDistributions.Argus Type
julia
Argus(χ, c)

A Argus distribution, which is used in particle physics to describe the invariant mass of a decayed particle candidate. The probability density function (pdf) of the ARGUS distribution is given by:

f(x;χ,c)=ξ32πΦ(ξ)xc21x2c2exp(12ξ2(1x2c2))
julia
Argus()        # equivalent to Argus(1, 1)

params(d)        # Get the parameters, i.e. (χ, c)

External links:

source

AdditionalDistributions.Benini Type

A Benini distribution, which is a three-parameter distribution often used in economics and actuarial science. The probability density function (pdf) of the Benini distribution is given by:

f(x;α,β,σ)=eαlog(xσ)β[log(xσ)]2(αx+2βlog(xσ)x),x>σ
julia
Benini()        # equivalent to Benini(1, 1, 1)
Benini(α)        # equivalent to Benini(α, 1, 1)
Benini(α, β)        # equivalent to Benini(α, β, 1)

params(d)        # Get the parameters, i.e. (α, β, σ)

External links:

source

AdditionalDistributions.Benktander_Type1 Type
julia
Benktander_Type1(a, b)

A Benktander_Type1 distribution, which is used in actuarial science for modeling heavy-tailed distributions. The probability density function (pdf) of the Benktander Type 1 distribution is given by:

f(x;a,b)=[(1+2blogxa)(1+a+2blogx)2ba]x(2+a+blogx),x1
julia
Benktander_Type1()        # equivalent to Benktander_Type1(1, 1)
Benktander_Type1(a)        # equivalent to Benktander_Type1(a, a(a+1)/2)

params(d)        # Get the parameters, i.e. (a, b)

External links:

source

AdditionalDistributions.Benktander_Type2 Type
julia
Benktander_Type2(a, b)

A Benktander_Type2 distribution, which is used in actuarial science for modeling heavy-tailed distributions. The probability density function (pdf) of the Benktander Type 2 distribution is given by:

f(x;a,b)=eab(1xb)xb2b(axbb+1),x1
julia
Benktander_Type2()        # equivalent to Benktander_Type2(1, 1)
Benktander_Type2(a)        # equivalent to Benktander_Type2(a, 1)

params(d)        # Get the parameters, i.e. (a, b)

External links:

source

AdditionalDistributions.Bhattacharjee Type
julia
Bhattacharjee(a, b, σ)

A Bhattacharjee distribution is a continuous univariate distribution where the mean follows a rectangular (uniform) distribution and the conditional distribution given the mean is normal. Specifically, if the mean θ follows a uniform distribution between a and b, and the conditional distribution of X given θ is normal with mean θ and standard deviation σ, then X follows a Bhattacharjee distribution.

f(x)=1ba[Φ(xaσ)Φ(xbσ)]
julia
Bhattacharjee()        # equivalent to Bhattacharjee(0, 1, 1)
Bhattacharjee(σ)       # equivalent to Bhattacharjee(0, 1, σ)

params(d)        # Get the parameters, i.e. (a , b, σ)

External link:

*Bhattacharjee Distributions on Technometrics

source

AdditionalDistributions.BirnbaumSaunders Type
julia
BirnbaumSaunders(μ, α, β)

A BirnbaumSaunders distribution, also known as the fatigue life distribution, is used to model life data and times to failure. It is defined by three parameters: the location parameter ( \mu ), the shape parameter ( \alpha ), and the scale parameter ( \beta ). The probability density function (PDF) of the Birnbaum-Saunders distribution is given by:

f(x)=xμβ+βxμ2α(xμ)ϕ(xμββxμα)
julia
BirnbaumSaunders()        # equivalent to BirnbaumSaunders(0, 1, 1)
BirnbaumSaunders(σ)       # equivalent to BirnbaumSaunders(0, α, 1)
BirnbaumSaunders(σ,β)       # equivalent to BirnbaumSaunders(0, α, β)

params(d)        # Get the parameters, i.e. (μ , α, β)

External links:

source

AdditionalDistributions.Bradford Type
julia
Bradford(a)

A Bradford distribution is defined by the following probability density function (PDF):

f(x;a)=alog(1+a)(1+ax),0<x<1

where:

julia
Bradford()        # equivalent to Bradford(1)

params(d)        # Get the parameters, i.e. a

External links:

source

AdditionalDistributions.Burr Type
julia
Burr(c, k, λ)

An Burr distribution is defined by three parameters: c, k, and λ, where c and k are shape parameters and λ is a scale parameter.

The probability density function (PDF) of the Burr distribution is given by:

f(x;c,k,λ)=ckλ(xλ)c1(1+(xλ)c)(k+1)
julia
Burr()        # equivalent to Burr(1, 1, 1)
Burr(c)       # equivalent to Burr(c, 1, 1)
Burr(c, k)    # equivalent to Burr(c, k, 1)

params(d)        # Get the parameters, i.e. (c, k, λ)

External links:

source

AdditionalDistributions.CrystalBall Type
julia
CrystalBall(α, m, x̄, σ)

A CrystalBall distribution is commonly used to model various lossy processes in high-energy physics. The probability density function (PDF) of the Crystal Ball distribution is defined as:

f(x;α,n,x¯,σ)={Nexp((xx¯)22σ2),for xx¯σ>α NA(Bxx¯σ)n,for xx¯σα

where:

  • A=(n|α|)nexp(|α|22)

  • B=n|α||α|

  • N=1σ(C+D)

  • C=n|α|1n1exp(|α|22)

  • D=π2(1+erf(|α|2))

julia
CrystalBall(α, m)        # equivalent to CrystalBall(α, m, 0, 1)
CrystalBall(α, m, x̄)     # equivalent to CrystalBall(α, m, x̄, 1)

params(d)        # Get the parameters, i.e. (α, m, x̄, σ)

External links:

source

AdditionalDistributions.Dagum Type
julia
Dagum(a, b, p)

A Dagum distribution is defined by three parameters: a, b, and p. It is commonly used in economics for modeling income distributions. The probability density function (PDF) of the Dagum distribution is given by:

f(x;a,b,p)=apx(xb)ap((xb)a+1)(p+1),x>0
julia
Dagum()        # equivalent to Dagum(1, 1, 1)
Dagum(a)    # equivalent to Dagum(a, 1, 1)
Dagum(a, b)    # equivalent to Dagum(a, b, 1)

params(d)        # Get the parameters, i.e. (a, b, p)

External links:

source

AdditionalDistributions.Gompertz Type
julia
Gompertz(η , b)

A Gompertz distribution is commonly used to describe the distribution of adult lifespans and model survival data. The probability density function (PDF) of the Gompertz distribution is given by:

f(x;η,b)=ηbexp(η+bxηebx),x0
julia
Gompertz()        # equivalent to Gompertz(1, 1)
Gompertz(η)        # equivalent to Gompertz(η, 1)

params(d)        # Get the parameters, i.e. (η, b)

External links:

source

AdditionalDistributions.Lomax Type
julia
Lomax(α, λ)

A Lomax distribution, also known as the Pareto Type II distribution, is commonly used in business, economics, and actuarial science. The probability density function (PDF) of the Lomax distribution is given by:

f(x;α,λ)=αλ(1+xλ)(α+1),x0

where:

  • α is a shape parameter

  • λ is a scale parameter

julia
Lomax()        # equivalent to Lomax(1, 1)
Lomax(α)       # equivalent to Lomax(α, 1)

params(d)      # Get the parameters, i.e. (α, λ)

External links:

source

AdditionalDistributions.Maxwell Type
julia
Maxwell(a)

A Maxwell-Boltzmann distribution, often used in physics to describe the distribution of particle speeds in idealized gases, is defined by the following probability density function (PDF):

f(x;a)=2πx2a3exp(x22a2),x>0
julia
Maxwell()        # equivalent to Maxwell(1)

params(d)        # Get the parameters, i.e. a

External links:

source

AdditionalDistributions.Nakagami Type
julia
Nakagami(m, Ω)

A Nakagami distribution, often used to model physical phenomena in areas such as medical ultrasound imaging and communications, is defined by the following probability density function (PDF):

f(x;m,Ω)=2mmΓ(m)Ωmx2m1exp(mΩx2),x0

where:

  • m is a shape parameter

  • Ω is a spread parameter

julia
Nakagami()        # equivalent to Nakagami(0.5, 1)
Nakagami(m)        # equivalent to Nakagami(m, 1)

params(d)        # Get the parameters, i.e. (m, Ω)

External links:

source

AdditionalDistributions.PERT Type
julia
PERT(a, b, m)

A PERT distribution is commonly used in project management for modeling the uncertainty of task durations. The probability density function (PDF) of the PERT distribution is given by:

f(x;a,b,c)=(xa)α1(cx)β1B(α,β)(ca)α+β1,axc

where:

julia
PERT()        # equivalent to PERT(0, 0.5, 1)

params(d)        # Get the parameters, i.e. (a, b, m)

External links:

source